

- 2. Data in all species (*humans* and livestock)
- 3. Center for the Study of Fetal Programming, University of Wyoming

 Children developed lifetime health problems that were:
 Unique to their genetics
 Passed on to their children

EI PURINA

Epigenetics

Is a term used to describe the idea that environmental factors can cause an organism's genes to behave (or "express themselves") differently, even though the genes themselves don't change.

⊠**Purin**a

Effects of the Holocaust on the Physical Health of the Offspring of Survivors

The epigenetic changes brought about by fetal programming are not limited to the fetal period. There is ample proof that they are permanent, last throughout life, and can be <u>passed on</u> to future generations.

Hazani and ShaSha, Perspective, April 2008

12 PURINA

Fetal Programming

- Refers to maternal events during development of the fetus...that have life-time effects on the calf after birth.
- Each trimester appears to be critical

⊠**Purin**a

Fetal Programming in cows

- The brood cow is the only "managed livestock species" where the industry plans on her to lose weight during gestation.
- Do cows receive <u>consistent nutrition</u> in early, mid and late gestation?
 Green-up...condition loss
 Drought...condition loss
 Winter...condition loss
- "Maternal Hunger" is the norm.

Examples of Stress

- Nutritional deficiency
 - □ Protein, energy, vitamins and minerals

LAND O LA

Encol.

Multiple pregnancies

Environmental

- Temperature extremes
 - 1. Heat
 - 2. Cold 3. Wind chill
- Prenatal steroid exposure
- Health

When is the critical stage? Last trimester Over 75% of fetal growth This has always been the focus Birth weight can be effected First 2/3 of pregnancy Overlooked because of supposed less demand for nutrients Placenta develops Organs differentiate (lung, liver, Gl tract) Organs grow

Fetal Programming Data

- Highlights from University of Nebraska □ Google, Dr. Rick Funston on the internet
- Effects of supplementation during last 1/3 of gestation in beef cows
- Three year studies
- Looks at performance of the calf crop

[™]Purina

Fetal Programming Data

- Following slides
 - □ Supplementation last trimester
 - □ Cow herd 5.0 to 5.5 body condition score
 - □ Only share the highlights

™PURINA

Effect of dam nutrition on weight of offspring

Item	Dam Nutrition No Supplement	Dam Nutrition + Supplement
Birth weight, Ibs	79	81
Weaning weight, Ibs	462 ^a	476 ^b

 $^{\rm a,b}\mbox{Means}$ with different superscripts differ (P<.05)

Stalker et al., 2006

Item	Dam Nutrition	Dam Nutrition
	No Supplement	+ Supplement
Avg. daily gain	3.48	3.43
Feed intake, dm	18.7	18.8
Feed conversion	5.4	5.5

EPURINA

Effect of dam nutrition on carcass traits of offspring

ltem	Dam Nutrition	Dam Nutrition
	No Supplement	+ Supplement
Carcass wt.	799	812
Dressing %	64.9	64.6
Yield Grade	2.99	2.96

ELAND O LAN

EAND O LAN

em	Dam Nutrition	Dam Nutrition
	No Supplement	+ Supplement
larbling Score	467	479
hoice, %	85	96

em	Dam Nutrition	Dam Nutrition
CIII	No Supplement	+ Supplement
ow condition-	5.3	5.2
ow condition- ebruary 28	4.5	5.1

¤**Purin**a

How do we characterize the nutritional program?

Did supplementing the cowherd increase marbling & fertility of the next generation?

Or

Was cowherd nutrition inadequate and therefore marbling & fertility was reduced?

⊠ PURINA

EAND O LAN

Fertility of replacements

■ A different set of data follows

14	Down Nutrition	Dem Nutrition
item	No Supplement	+ Supplement
Body condition, initial	5.2	5.2
Body condition, final	4.6	5.2

2 Purina

Effect of dam nutrition on replacement heifer fertility

Item	Dam Nutrition	Dam Nutrition				
	No Supplement	+ Supplement				
Body wt lbs, weaning	455	466				
Conception rate, %	80	93				
Calved in the first 21 days, %	49 ª	77 ^b				
^{a.b} Means with different superscripts differ (P<.05)						
Martin et al., 2007						

ELAND O LAN

Cow Nutri Winter Ra	tional Statu ngeland	S –
ltem	Dam Nutrition No Supplement	Dam Nutrition + Supplement
Cow condition Pre-calving	4.8	5.2
Cow condition- @ Weaning	5.1	5.2

Larson et al., 2009

PURINA				
Cow Nutritional Status – Crop Residue				
Item	Dam Nutrition No Supplement	Dam Nutrition + Supplement		
Cow condition	5.4	5.2		

	No Supplement	+ Supplement
Cow condition	5.4	5.2
@ Pre-calving		
Cow condition-	5.2	5.1
@ Weaning		

Larson et al., 2009

■Purina Support Effect of "Winter Range" dam nutrition on weight of offspring

Item	Dam Nutrition No Supplement	Dam Nutrition + Supplement
Birth weight, lbs	81°	84 ^d
Weaning weight, Ibs	495 ª	543 ^b

^{a,b}Means with different superscripts differ (P<.05)

 $^{\rm c,d} \rm Means$ with different superscripts differ (P<.10)

Larson et al., 2009

PURINA				
Effe nutr	ct of ition	"Winter on carc	' Range'' asses o	ˈ dam f offspring

Item	Dam Nutrition	Dam Nutrition
	No Supplement	+ Supplement
Carcass Wt	785ª	827 ^b
Choice, %	77 ª	85 ^b
Premium Choice, %	27 ª	43 ^b
^{a,b} Means with different su	perscripts differ (P<.0	05)

Larson et al., 2009

22 PURINA

Effect of "Crop Residue" dam nutrition on weight of offspring

E LAND O LA Feed

ltem	Dam Nutrition No Supplement	Dam Nutrition + Supplement
Birth weight, Ibs	82°	86 ^d
Weaning weight, Ibs	539	517

^{c,d}Means with different superscripts differ (P<.10)

Larson et al., 2009

nutrition on ca	arcasses of	offspring	Health
Item	Dam Nutrition No Supplement	Dam Nutrition + Supplement	■ The numbe and morbid
Carcass Wt.	816	810	
Choice, %	65ª	88 ^b	
	15a	35 ^b	

The number 1 cause of feedlot mortality and morbidity is respiratory disease

Effect of "Winter Range" dam nutrition on health of offspring

Item	Dam Nutrition No Supplement	Dam Nutrition + Supplement
Treated, %	17	17
Birth to weaning		
Treated, %	12ª	0 ^b
Weaning to Finish		

^{a,b}Means with different superscripts differ (P<.05)

Larson et al., 2009

■Purna Support of "Crop Residue" dam nutrition on health of offspring

Item	Dam Nutrition	Dam Nutrition
	No Supplement	+ Supplement
Treated, %	19	20
Birth to weaning		
Treated, %	11ª	3 ^b
Weaning to Finish		

 $^{\rm a,b}{\rm Means}$ with different superscripts differ (P<.05)

Larson et al., 2009

EPURINA

LAND O LAKES'

It appears to be more than just maintaining body condition

- Winter Rangeland...Results of fetal programming were more dramatic when cows were in poorer condition before calving
- However, on Corn Residue...Even though cows were in similar body condition, providing supplement programmed the fetus for better health in the feedyard

PURINA

How are cows in the U.S. fed? A beef cow is the most nutritionally challenged of livestock species

LAND O LA

- We plan on gestating cows to lose weight during the winter
- What if we cared for the cowherd like we do pregnant women?

E Purina

How Well Do We Care For Young Females?

- First calf heifer (pre-calving)
- Wet 2 year old
- Second calf cow
- Third calf cow

PURINA Encol. Priority for Nutrients-Wet 2 yr Old In alphabetical order Activity 1. Basal metabolism 2. 3. Cycling & initiation of pregnancy Energy reserves, Basic 4. Energy reserves, Additional 5. Energy reserves, Excess 6. Growth 7. 8. Lactation Maintenance of pregnancy 9.

PURINA

Priority for Nutrients-Wet 2 yr Old

- Ranked based on demand in the cow
 - 1. Basal metabolism
 - 2. Activity
 - 3. Growth
 - Energy reserves, Basic
 Maintenance of pregnancy
 - 6. Lactation
 - 7. Energy reserves, Additional
 - 8. Cycling & initiation of pregnancy
 - 9. Energy reserves, Excess

M PURINA

Focus on Young Females

- How old are cows when they stop growing?
- Aren't 3-4 year old cows always thinner than mature cows?
 - □ Recall the "priority of nutrients"
 - □ They often wean lighter calves than mature cows do.
 - □ If you feed them, their calves can outweigh the calves from mature cows!

PURINA

Year-round supplementation

- What is it?
- What have ranchers seen?

Even O La

- 2. Growth traits:
 - · Weaning weights
 - Carcass weights
 - Marbling
- 3. Health

PURINA PURINA Fetal Programming Conclusions Implications of Fetal Programming ■ If you buy and/or feed cattle...you need to know The gestational nutrition of your herd this more than the pay weight year, imprints the lifetime genetic potential Replacement heifers and young cows: and performance of subsequent generations. □ Know their history Don't let them lose condition, it's an investment in the future The cow herd The performance of a calf is influenced not This spring's calf crop was influenced by last year's climate and your nutritional decisions relative to forage resources. only by its nutrition before and after birth, but also by the prior fetal nutrition of both its dam □ You can positively influence the next calf crop(s) by focusing on consistent daily nutrition of your herd and grand dam. You cannot change the past, but you can positively influence future generations.